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A Lorentz-invariant theory of singular Lagrangian particle systems with self- 
action, treated as a dependence of the Lagrangian upon acceleration, is devel- 
oped. The Lagrangian equations and their exact special solutions are found. The 
first integrals of 4-momentum and angular momentum are calculated. Particles 
possessing weak self-action are treated as classical analogs of particles with 
half-integral spin. 

I. The purpose of this paper is to develop a Lorentz-invariant theory of 
Lagrangian systems containing, besides coordinates and velocities, their 
derivatives of higher orders. The presence of such derivatives describes a 
self-action, being equivalent to the existence in the system of an exterior 
field whose characteristics are determined, in their turn, by derivatives of 
the second order. The first integrals of the 4-momentum and angular 
momentum are found for these systems. Systems in which the self-action is 
weak are studied in more detail; similar investigations have been carried out 
by Mathisson (1937) and Papapetrou (1951). 

We show here that the admission of self-action leads to qualitatively 
new physical effects which do not follow from a conventional Lorentz- 
invariant theory in the pseudo-Euclidean space. 

II. In the pseudo-Euclidean space with metric I 

(1) 

where e~) -- diag(1, - 1, - 1, - 1) is Eisenhart's symbol and 8#v is Kronecker's 

i/~, v = 0,1,2,3. Summation over the greek indices is performed according to the Einstein rule. 
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symbol, we consider a particle described by an action integral of the form 

fs2e ( w y )  as (2) S ~  --10t 
Sl 

Here the integration is performed along a world line between two given 
events, i.e., locations of the system at its initial and final positions at given 
time moments ~'~ and ~2; a is a constant characterizing the system. Later on 
for simplicity we put a = 1. 

We denote 4-velocity by u s = dxS/ds and 4-acceleration by w s = 
duS/ds; it is obvious that 

usuS = 1, uswS = 0 (3) 

The form (2) of the action integral is chosen for two reasons: firstly, it 
must be an integral of a true scalar; secondly, the relations (3) lead to the 
fact that the function ~ may depend only on ( -  ww~), the sign being chosen 
for convenience since 

w y  < 0 (4) 

It is assumed also that the integrand does not depend explicitly on 
coordinates and time. 

We do not take into account relations (3) in advance, so when varying 
S no use of the method of indefinite Lagrangian multilSliers has to be made. 

According to the principle of least action, 

~s  = 0 (5) 

After variation, taking into account that the operations 3 and d /ds  do 
not commute, and representing ds as ds = r dx*) ~/2, we obtain 

8s= - s f e a s =  - f , e  as - f e,d  (6) 

3~ = 3w s. ( O~/Ow s) (7) 

8wS = S ( d . s / a , )  = d ( S u S ) / d s  - ( # u S / d s ) ( S d # d s )  (8) 

8u s = 3( dx"/ds ) = d( 3xS ) /ds  - uS( 3ds/ds ) (9) 

3ds = dxsd(SxS) as usd(3xs) (10) 
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Substituting equations (6)-(I0) into (5) and taking into account that 

8x ~' ~,,,~ = ~Su ~' ~,,,~ = 0 (11) 

we get 

8 S - - -  d~20w, as e+"'ds aw~ ~a. . . , j j  d~=~ (12) 

From this and from the arbitrariness of 8x~, the Lagrangian equations 

ds 20w~, u" ~ + u,--~ Ow, w,--Ow, (13) 

follow. 
The equations (13) lead to the first integral, the 4-vector of the system's 

momentum: 

d Oe O e )  d Oe 
p,=u, e+u.~ ~ Ow. gs (14) 

d[ a su ] 

where p~ is determined by the expression (14). 
If the system is translated infinitesimally, then 

8x ~' = 8.~ ~ + a u, 8u ~ = 0 (16) 

where a ~ is an infinitesimal constant vector, then, as the system is closed, we 
come to the conservation law for the 4-momentum p~. If the system 
undergoes an infinitesimal rotation, we have 

8x ~' = ~fP'"x~, 8u ~' = 8fP'"u, (17) 

where 8fl ~"-- -~f~"~ is an infinitesimal skew-symmetrical tensor (Landau 

(15) 

Let us return now to the variation 8S. 
When the system is moving along a true trajectory, the equations (13) 

are satisfied identically, and 8S has a form 
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and Lifshitz, 1967) 

+ 0~ 

from which, taking into consideration that 8f~"-- -8f~ "~ is arbitrary, the 
system is closed and z 

9E 
8a"'(pl~,,x,l.+--~--~wt,,u,,+):=O (19) 

we come to the conservation law for the skew-symmetrical 4-tensor of the 
angular momentum of the system: 

M~,~=l (p t , . x~ , l_+ Owtv.OE u~,l - ) 

which differs from the classical expression 

M'o;" =  pt,,x J- 

by the presence of a spin term 

1 O ~ u ~ , l _  
Ms~" 20wt ."  

(20) 

(21) 

(22) 

III. We rewrite now equations (13) in terms of the Frenet tetrad (e~'~)) 
which is determined by conditions 

= " = = d i a g ( - I  - 1  - 1 )  e~) u ~, e(i)e~(k) g(i)(k) , , 

( i , k = 1 , 2 , 3 )  (23) 

d 
-~s e~o) = w ~' = ye~l ~ , 

d it 
- d s e ( , ) =  Ye~o ) + ze~2 ~ 

d d 
-~s e~2) = - ze~l) + te~3)' --ds e~'(3) = - te~2) (23a) 

where y, z, t are parameters of the tetrad, 

_ w~w ~ = y2 (24) 

- -  = - , - -  ( 2 s )  Ow~, 2w~' O ( -  w~w ) - 2 y e l l )  Oy 2 

2Here pl,,.X~,l+ ~ pvx~ + p~,x~, pt,,.X~l_ = p,x~ - p~,x~. 
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and below 

903 

0 
OY 2 :='  (26) 

Because of equations (22)-(26), the Lagrangian equation (13) takes the 
form 

so that 

e~)[d(~-2y2~')+2yd(y~')]  

+ e ~ ) [ y ( E - 2 y 2 E  ' - 2z2E', +2~s22 (yE')] 

d . +e~)[2z--~(yE )+-~-(2E'yz)] 

+ e~3)[2E'yzt ] = 0 (27) 

d (E _2y2E,)+2y_~_(yE, ) = 0 (28) 

y(E - 2 y2E,_ 2z2~ ') + 2 fiT2 (YE') = 0 (29) 

d d (2E'yz) = 0 (30) 2z (Y~')+ ds 

2yzt~'=O (31) 

Since the parameter t (having nothing to do with the time) appears only 
in (31), the solution of this equation is t = 0. 

We shall seek a solution of the system of equations (28)-(30) in the 
form 

dy dz 
= = 0 ( 3 2 )  

Then equations (28) and (30) are satisfied identically, and equation (31) 
transformed from a differential equation to an algebraic one which is 

includes z as an arbitrary constant parameter. 
The system of equations (28)-(30) takes the form 

y( ~ - 2 y 2 e ' -  2z2E ') = 0 (33) 
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One of the solutions of the equation is 

This corresponds to 

y = 0  (34) 

du  ~ 
w ~ -- - -  = u ~ (35) ds = Ye~) 0, =cons t  

and describes a system with action integral in a form 

S= - f d s  (36) 

with the 4-momentum 

p~ = u ~', M ~ = 0 (37) 

If y :~ 0, then solutions to the equation 

~ - 2 y 2 ~ ' - 2 z 2 ~ ' =  0 (38) 

depend on the specific form of the function ~ (y  2) which will be considered 
later. 

Let us turn to the expression (14) for the 4-momentum p~. 
Substituting the Frenet tetrad into equation (14) and using equations 

(32) and (38), we obtain 

p~ = eL)(2~'z 2 ) + e~2 ) (2~'yz) (39) 

It is easily seen from equation (39) that, if the torsion parameter z 
vanishes, then p~ = 0 for any form of the function E. 

After contraction the equation (39) takes the form 

p,p~ = 4E,2zZ( z2 _ y2) (40) 

from which it follows that the sign of p~p~ depends on the relation between 
Izl and lYl. 

1. Let [z[ < lYl- In this case the Frenet tetrad can be chosen as 

e~o)= [(h~o)cosh X + h~l)sinh X ) coshO + h~2)sinhO] cosh ~ + h~s)sinh ~b 

e~,) = (h~0)cosh • + h~,)sinh X) sinh0 + h~2)cosh0 

e~)= [(h~0,cosh X + h~'l)sinh X ) cosh0 + h~2)sinh0 ] sinh q, + h~3,cosh ~b 

(41) 
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Here q,, X are arbitrary constant parameters, 0 = O(s)(h~)) is a con- 
stant orthonormal tetrad of the pseudo-Euclidian manifold. 

The relations (23a) take the form 

(42) y = cosh ~k-~- 

z - - -  - sinh + ~-- (43) 

( z( 
coshg,= 1 - ) S  , sinh,k= Y 1 - ) S  (44) 

Introducing the absolute time co" = x (~ and performing integration, we 
obtain 

x ~ = sinhO(coshEg, c o s h h / y ) ,  x ~ = sinhO(cosh:~sinh ) , / y )  

x ~2~ = coshO(cosh2q~/y), x ~3) = O(sinh+coshq.,/y) (45) 

Using equations (41)-(44), the formula (39) for p~' takes a form 

p" = h~3)(Zf~' yz ) ( 1 -  z2/yZ ) l/z (46) 

i.e., in the laboratory reference frame p" has only one spatial component. 
Let us turn now to the equations (20)-(22) for the 4-tensor of angular 

momentum, M"". We take of it the purely spatial part M ik, and form the 
3-vector of angular momentum 3, 

M i= eiktMkt, i, k, 1 = 1,2,3 (47) 

Here e ~kt is the Levi-Civith symbol, completely skew-symmetrical object 
of the third rank. Using equations (20-(22), we find the expression for Mi: 

M i =  eit't.l ( pte Xkl_+ -~wle Uk,_ ) (48) 

It can be easily shown by direct calculation using equations (39)-(45) 
that the orbital part of the moment 

Mo~ = �89 (49) 

3Latin indices are subjected to the usual summation convention. 
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identically vanishes. Therefore, only the spin part 

makes a contribution to 
equation (48) we obtain 

Movsesyantz 

M/k = u'J- (50) 
2 0 w  tk, 

the 3-vector of the angular momentum. From 

z 2 

(51) 

Let lY[ < Iz[ �9 In this case the Frenet tetrad can be chosen in the form 

( y( cosh + = 1 - , sinh q, = - 1 - -~  (54) 

x c~ = O ( c o s h X c o s h + s i n h + / y ) ,  x ~ = sinO(sinh2q~/y) 

x t 2 ) = - c o s O ( s i n h Z ~ / y ) ,  x ~  (55) 

Now the expression (14) for p" takes a form 

p " =  [h~0)coshX + h~a)sinhX](2E'z 2) 1 -~ -  7 (56) 

i.e., in this case p~' contains both temporal and spatial components. 
For M ik we obtain again 

~ t ~  = r = 0 (57) 

. 

e~)= [h~o)cosh X + h~3)sinh h] cosh + + [h~l)cos 0 + h~2)sin0] sinh ~b 

e~l ) = - h~l)sin 0 + h~2)cos 0 

e~)= [h~0)cosh~, + h~3)sinh~] sinhq~ + [h~,)cos0 + h~2)sin0] cosh~b (52) 

where q,, X are arbitrary parameters, 0 = O(s). 
Performing similar calculations, we obtain 

dO - cosh~p ~--~ (53) y = sirth ~k ds ' z = 
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and only the spin part 

Ml= e'y2z-'(1- ) -'/2] (58) 

is linear one. The functions 

meet this requirement. 

E = l + e ( y 2 )  '/2 (60) 

= 1 + ey  2 (61) 

or 

Substituting the function (60) into equation (38) ~ - 2 y 2 ~  ' -  2 z 2 ~  ' =  O, 
we obtain 

l + e ( y 2 ) ' / Z - 2 y Z ( e / 2 ) ( y 2 ) - l / 2 - 2 z Z ( y 2 ) - ' / 2 = O  (62) 

y = ez z (63) 

We put [z[ < 1. This is justified by the necessity of the limiting transition 
Izl ---' 0. Then z 2 < Izl and y = ez 2 < Izl. Substituting equation (63) into the 
expressions (56) for p~ and (58) for M i we obtain 

p"  = [ h~o)cosh ~ + h~3)sinh ~ ]-(1 - e2z 2 ) ' /2  (64) 

E2 Z _. ] M'= - -i-C l- (65) 

p~,p~' = 1 - e2z 2 > 0 (66) 

makes a contribution to M i. 
3. The case Izl = lYl corresponds to ds = 0 and is not considered in this 

paper. 
IV. Let us consider specific forms of E functions. 
We shall restrict ourselves to the case when the self-action in a system 

is weak and the function E can be represented as 

e = 1 + e f ( y  2) (59) 

Here f ( y  2) is an arbitrary function, and e is a small parameter, the meaning 
and value of which are determined by the type of self-action in the system. 
Obviously, the type of the function f ( y 2 )  will determine the power of the 
algebraic equation (38). We shall consider the cases when the equation (38) 
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Making the limiting transition in equations (63)-(66), e, z ---, 0 we come 
to the case described by equations (34)-(37). 

Let us turn now to the function (61). 
Substituting (63) into equation (38), we obtain 

1 + ey  2 - 2 e y  2 - 2 e z  2 = 0 (67) 

o r  

1 - - 2 e z  2 
y2 = _ _  > z 2 (68) 

/? 

We calculate p~ and M ~ from equations (46) and (51) taking into 
account equation (68): 

p" = 2 h ~'3)(lelz z),/2(1 _ 3ez 2)'/2 (69) 

M ' =  h~3 ) [[ell/2sinh X(1 - 2ez 2)(1 - 3 e z : ) - ' / : ]  (70) 

p~,p~' = - 41elz2(1 - 3ez 2) < 0 (71) 

Taking a similar limiting transition in equations (69)-(71), e, z ~ 0 we 
obtain 

p~' = O, M i = 0 (72) 

It is worth mentioning that if only z ~ 0, then p~' = 0 and 

M ~ = h~c3)(sinh X lel ~/2) (73) 

V. Turning to the discussion of the results of this paper, we conclude 
that the system described by the Lagrangian 

E = l + e ( y 2 )  I/2 

may serve as a classical analog of quantum-mechanical free particles with 
half-integral spin. Here the presence of a spin angular momentum is 
conditioned by two factors: the purely geometrical one, z (torsion), and the 
physical one, e, that characterizes the type of interaction in the system. 
These same factors lead, independent of signs of parameters, to decreasing 
the square of the 4-momentum of the system. 
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The case described by the Lagrangian C = 1 + ey  2 does not have any 
classical or quantum-mechanical analogs since the usual 3-velocity in the 
given solution is less than the light velocity, though the squared 4-momen- 
tum is negative. This property differs drastically from the so-called 
"tachyon" solutions. 

Systems with Lagrangians C of different forms are not considered in 
this paper; the complication of ~ leads to algebraic equations of higher 
degrees, and in the cases when the latter have real roots one comes to a 
model theory of interacting particles. 
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